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LETTER TO THE EDITOR 

Critical behaviour of integrable mixed-spin chains 
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SHo Paulo. Brazil 
$ InstiNlo de Fisica e Quimica de S a  Carios, SHo Carlos, 13560 S.%o Paulo. Brazil 

Received 24 February 1992 

Abstract We wnsmct a mixed spin-: and spin4 integrable model and investigate its finit& 
size propenies. For a cenain conformal invariant mixed spin system the cenw charge can 
be decomposed in terms of the conformal anomaly of two single integrable models of spin 1 
and spin (S - i). We also compute the ground-state energy and the sound velocity in the 
thermodynamic limit 

Integrable magnetic spin chains provide important examples of systems which can be derived 
from the so-called Yang-Baxter algebra [l]. A well &own model is the isotropic spin-; 
Heisenberg [Z] chain and its generalization for arbitrary spin S [3,4]. Another interesting 
example is the Heisenberg model in the presence of an impurity of spin S [5,6]. In such a 
model one of the local vertex weights acts on a pair of asymmetric vector spaces which is 
defined by the local states on the horizontal and vertical lines of a two-dimensional lattice. 
More recently, a general discussion concerning the construction of mixed-vertex models has 
been presented by de Vega and Woynarovich [7]. For instance, they have studied several 
properties of the thermodynamic limit of an alternating anisotropic chain of spins and 
1. However, the finite-size effects in these mixed-spin models as well as their class of 
universality for conformally invariant systems is still to be investigated. Following the 
approach of [7] we construct an isotropic alternating spin-; and spin4 chain. We focus 
our attention in the analysis of the finite-size behaviour of the ground state on a line of 
length L. A conformally invariant mixed system can be defined and its conformal anomaly 
is computed by analysing the finite-size corrections for the ground-state energy and by the 
thermodynamic Bethe ansatz. Several useful quantities such as the ground-state energy and 
the sound velocity are also computed. 

The construction of the transfer matrix of the mixed spin-ff and sp in3  model is based 
on the local vertex R&(A) which is a matrix in the auxiliary space V, and its mahix 
elements are operators of spin S acting on the Hilbert state space at site j .  In the case of 
an auxiliary space of spin 4, RA(:@) [SI is given by 

where S,', U = 1,2 ,3  are spin4 operators and So is a (2s + 1) x (2s + 1) identity mahix. 
In the case of an alternating spin-; and spin4 mixed model the set of commuting 

transfer mamx T1/z,s(A) assumes the following form: 

(2) 
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where rl/zs is a (2 x 2) matrix in the auxiliary space V ~ / Z  denominated the moncdromy 
matrix. Here we impose periodic boundary conditions and the length L is an even number. 

The associated one-dimensional quantum Hamiltonian which commutes with T1p.s is 
defined by HI/Z.S = iJd/dhlog(T]/z,s(A))ln=i/z and has the following expression: 

(3)  

where ui, i = 1,2 ,3  are Pauli matrix elements, no is the identity matrix, and j = 
2J/(2S + 1)' . In this paper we are interested in the antiferromagnetic ( J  > 0) regime of 
(3), and we assume, for the sake~;f simplicity, J = 1. 

Similarly to the usual spin-; Heisenberg chain, the Hamiltonian (3) can be diagonalized 
by the quantum inverse scattering method [9]. The eigenenergies are parametrized in terms 
of the complex numbers Aj: 

M 1  
= - c 

J = L  J 

where A j  satisfy the so-called Bethe ansatz equation 

Aj-i/2 A.-iS A ~ - A ~ - ~  (m) (h) = - E A j - A l + i  

(4) 

(5) 

where M = f L ( S  + 1) - r,  and r labels the disjoint sectors of the eigenvalues of the total 
spin operator CjM,odd(uj) + ~E,,(s,). 

In order to find the structure of the numbers Aj for finite-size systems we numerically 
solve (4) and (5) and compare them with the exact diagonalization of the Hamiltonian (3). 
In figure I@), (b)  we show the picture of the ground state for L = 6, 8 ,  10 and S = 1, i. 
In table 1 we present the respective values of the complex parameter Aj.  For large enough 
L ( L  > 8 )  the numbers Aj cluster in two distinct sets of roots. One of them consists of 
real numbers (full circles) and the other of complex structures (crosses) AY which in the 
asymptotic limit L + 00 are called 2s-strings 

(6) 

Taking into account the structure discussed above, the ground-state energy per particle 

AY =cj + ;i(ZS+ 1 - 2a) a = 1.2,. . ., 2 s  

where f j  is a real number denominated centre of the 2s-string. 

eZz*' can be calculated and is given by 

where @ ( x )  is the Euler psi function. 
Analogously, it is possible to define the transfer matrix Ts,lp(A) of a mixed spin4 

and spin-; model which commutes with T,/&.). The transfer matrix Ts,,/z(A) has the 
following expression: 

Ts,I&) = Trv,(rs.lp(A)) 

~S.I/Z(A) = Rf/2 .L(APi ,L- l ( .V  .. . 
(8) 
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x -1.0 x i 
e 

- L O x  I 
configuratiom Of the nbe A, for L = 6,8,10 and S = 

Table 1. The numerical values of ihe numbers 2.1 of the Bnhe ansah equstion (5) conesponding 
to fhe ground state for L =6 ,8 ,10  and S = 1.3. 

L S = l  S= f 
6 0.316194fi0.508074 f i l . 5 ,  f i 0 . 5  

-0.494077, 0.228 965 &0.358639 
8 10.308362fi0.503329 f0.302413 * i l . W 3 2 3  

fO.308005 M.436072, It0201 077 
M.535 11 1 f i 0.510 I82 M.302415 * i I .060320 

f0.201079 
10 i0.444828.0 f0.436069, 1 i0 .5  

The commutativity between fip,s(A) and Ts,,/&I) derives from the Yang-Baxter 
relations satisfied by the local vertices R:,j [83. Interestingly enough, thii permits us to 
define a rotational invariant mixed vertex.mode1 by formally multiplying the two transfer 
matrix 171 

TSP = Til2sTs,ilz. (9) 

Due to commutativity [ f i / z , s ( A ) ,  Ts,1/2A'] = 0, the eigenenergies of the one-dimensional 
Hamiltonian associated to F" are paramehized by the same Bethe equations, namely (5). 
However, the expression for the total energy for a given set of numbers A] is 
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The model defined by (5) and (10) possesses all features of being conformally invariant, 
i.e. short-range interaction, translational and roturionnl symmetry and gapless low-lying 
excitations in the spectrum. Indeed, for low (total) momenta p t .  the dispersion relation is 
linear in p :  

E ( P )  - %P (11) 

where U, = 2rr is the sound velocity. 
The class of universality of this model can be determined by exploiting a set of 

important relations [lo] between the eigenspechum of finitelattice systems. In particular 
the conformal anomaly is related to the ground-state energy E:"(L) by [ l l ,  121 

where c is the central charge and e r  is the ground state per particle 

In table 2 we present our estimates for the central charge c of (12) for S = 1 ,  $. Our 
numerical result predicts a conformal anomaly c = 2.01(2) (S = 1)  and c = 2.500(6) (S = 
$). We notice that for S = 1 the extrapolation is less precise compared with S = ;. This 
is due to the fact that the bulk of the complex part of the two-string zeros are next to 
fi/2. As a consequence, we can'apply an analytical technique developed by de Vega and 
Woynarovich [13] and we find the exact value c = 2 for S = 1. 

Table 2. Th& estimates of the conformal anomaly of (12) for S = 1 and S = f 
L S = l  s=; 
8 2.210923 2839364 

16 2.061 249 2602543 
24 ,2.041930 ~2556301 
32 2020828 2.538530 
40 2.017593 2.529 503 
48 2.014692 2.524 142 
56 2.012134 2.520624 
Exvanolated 2.01(1) 2.500(6) 

Another efficient method to compute the conformal anomaly is by analysing the low- 
temperature behaviour of the associated free energy. For a critical system at low temperature, 
the free energy per particle has the following asymptotic behaviour [ll, 121: 

In the case of integrable onedimensional spin chains the thermodynamic properties can 
be studied by using the thermodynamic Bethe ansatz method. In this approach, the free 

t We remark here that the comR momentum operator.is half that wed in VI (see (2.35)). This implies that the 
sound velocity is double (U, = 2 r )  of that found previously in [7] (U$ = R ) .  
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energy is given in terms of variables denominated pseudoenergies, and its minimization 
yields a set of integral equations for these parameters. In order to obtain such equations for 
the mixed-spin model defined by (3, and (10) we follow [3,4] and here we give only the 
final results. The free energy at temperature T is given by 

where the pseudoenergies eo@), a = 1,2,3,, . . satisfy the following TBA equations: 

(16) E~(A):)IT = P(A) * ( I ~ ( I  + 
where eo@) = 0, f x g(x) denotes the convolution (l/Zn)~_+," f ( x ) g ( x  - y)dj ,  and 

The advantage of (15) and (16) is that they allow us to estimate exactly the low- 
temperature behaviour of the free energy. Using the standard procedure (see e.g. 14, IS]) to 
compute the leading behaviour of F(T), and some dilogdthm identities [16] we find the 
following result: 

P(W 
T + I ~ ( I  + + -(8n,l + 8n.ZS) 

p ( A )  = rr/cosh(irA). 

4s -  1 
6(2S+ l ) T Z .  F(T)/L = e ,  - 

Comparing (17) and (14). the value of the central charge is given by 

2(4S - 1) c =  
2 s + 1  . 

For S = 1,  $ we obtain c = 2,2.S which are consistent with our numerical findings of 
table 2. Interestingly enough, (18) can be decomposed in terms of the central charges of 
the integrable Heisenberg chains of spins 4 (c = 1) and S - 4 (c = 3(2S - 1)/2S + 1) .  
In this sense the effect of the interaction between spins and S is the 'reduction' of the 
critical behaviour of a spin S to S - it. Taking into account this last observation it is easy 
to conjecture the conformal anomaly of a mixed spin S and S'. In general, we can assume 
S' > S and the expected critical behaviour is given by the following conformal anomaly: 

3s 3(S'-S) 
S + 1  S ' - S + I '  c=- + 

We believe that result (19) is the first step toward the understanding of the composition 
of the operator content of these mixed spin models. However, it is still to be investigated 
how the primary fields are composed in these systems. We hope to report on this problem 
in a future publication. 

S R Aladim is indebted to F C Alcaraz for suggesting this problem and his collaboration 
in an early stage of this work, and to R Kaberle for discussions. We thank A Malvezzi for 
his help with numerical diagonalization. The work of M J Martins was partially supported 
by CNF'q (Brazilian agency). 

t We remark that I = S - is the smallest possible value in the addition of two 'angular momenta', S and $. 
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